Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.308
Filtrar
1.
Chemosphere ; 353: 141529, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428534

RESUMO

An important problem is the impact of photodegradation on product toxicity in biological tests, which may be complex and context-dependent. Previous studies have described the pharmacology of cefepime, but the toxicological effects of its photodegradation products remain largely unknown. Therefore, photodegradation studies were undertaken in conditions similar to those occurring in biological systems insilico, in vitro, in vivo and ecotoxicological experiments. The structures of four cefepime photodegradation products were determined by UPLC-MS/MS method. The calculated in silico ADMET profile indicates that carcinogenic potential is expected for compounds CP-1, cefepime, CP-2 and CP-3. The Cell Line Cytomotovity Predictor 2.0 tool was used to predict the cytotoxic effects of cefepime and related compounds in non-transformed and cancer cell lines. The results indicate that possible actions include: non-small cell lung cancer, breast adenocarcinoma, prostate cancer and papillary renal cell carcinoma. OPERA models were used to predict absorption, distribution, metabolism and excretion (ADME) endpoints, and potential bioactivity of CP-2, cefepime and CP-4. The results obtained in silico show that after 96h of exposure, cefepime, CP-1, CP-2, and CP-3 are moderately toxic in the zebrafish model, while CP-4 is highly toxic. On the contrary, cefepime is more toxic to T. platyurus (highly toxic) compared to the zebrafish model, similar to products CP-4, CP-3 and CP-2. In vitro cytotoxicity studies were performed by MTT assay and in vivo acute embryo toxicity studies using Danio rerio embryos and larvae. In vitro showed an increase in the cytotoxicity of products with the longest exposure period i.e. for 8 h. Additionally, at a concentration of 200 µg/mL, statistically significant changes in metabolic activity were observed depending on the irradiation time. In vivo studies conducted with Zebrafish showed that both cefepime and its photodegradation products have only low toxicity. Assessment of potential ecotoxicity included Microbiotests on invertebrates (Thamnotoxkit F and Daphtoxkit F), and luminescence inhibition tests (LumiMara). The observed toxicity of the tested solutions towards both Thamnocephalus platyurus and Daphnia magna indicates that the parent substance (unexposed) has lower toxicity, which increases during irradiation. The acute toxicity (Lumi Mara) of nonirradiated cefepime solution is low for all tested strains (<10%), but mixtures of cefepime and its photoproducts showed growth inhibition against all tested strains (except #6, Photobacterium phoreum). Generally, it can be concluded that after UV-Vis irradiation, the mixture of cefepime phototransformation products shows a significant increase in toxicity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Masculino , Fotólise , Testes de Toxicidade/métodos , Peixe-Zebra , Cefepima/toxicidade , Cromatografia Líquida , Espectrometria de Massas em Tandem
2.
Arch Toxicol ; 98(5): 1271-1295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480536

RESUMO

Adult neurotoxicity (ANT) and developmental neurotoxicity (DNT) assessments aim to understand the adverse effects and underlying mechanisms of toxicants on the human nervous system. In recent years, there has been an increasing focus on the so-called new approach methodologies (NAMs). The Organization for Economic Co-operation and Development (OECD), together with European and American regulatory agencies, promote the use of validated alternative test systems, but to date, guidelines for regulatory DNT and ANT assessment rely primarily on classical animal testing. Alternative methods include both non-animal approaches and test systems on non-vertebrates (e.g., nematodes) or non-mammals (e.g., fish). Therefore, this review summarizes the recent advances of NAMs focusing on ANT and DNT and highlights the potential and current critical issues for the full implementation of these methods in the future. The status of the DNT in vitro battery (DNT IVB) is also reviewed as a first step of NAMs for the assessment of neurotoxicity in the regulatory context. Critical issues such as (i) the need for test batteries and method integration (from in silico and in vitro to in vivo alternatives, e.g., zebrafish, C. elegans) requiring interdisciplinarity to manage complexity, (ii) interlaboratory transferability, and (iii) the urgent need for method validation are discussed.


Assuntos
Caenorhabditis elegans , Síndromes Neurotóxicas , Animais , Humanos , Peixe-Zebra , Testes de Toxicidade/métodos , Síndromes Neurotóxicas/etiologia
3.
Reprod Toxicol ; 125: 108558, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367697

RESUMO

There is growing interest in establishing alternative methods in place of conventional animal tests to assess the developmental and reproductive toxicity (DART) of chemicals. Gastruloids are 3D aggregates of pluripotent stem cells that spontaneously exhibit axial elongation morphogenesis similar to gastrulation. They have been explored as in vitro embryogenesis models for developmental and toxicological studies. Here, a mouse gastruloid-based assay was validated for DART assessment in accordance with the ICH S5(R3) guideline, which provides the plasma concentration data of various reference drugs in rodents, specifically Cmax and AUC for NOAEL and LOAEL. First, adverse effect concentrations of the reference drugs and their known metabolites on gastruloid development were determined based on morphological impact, namely reduced growth or aberrant elongation. Then, the NOAEL to LOAEL concentration range obtained from the gastruloid assay was compared with that in rodents to examine similarities in sensitivity between the in vitro and in vivo assays for each chemical. For 18 out of the 24 reference drugs that have both NOAEL and LOAEL information in rodents, the sensitivity of the gastruloid assay was comparable to the in vivo assay within an 8-fold concentration margin. For 7 out of the 8 additional reference drugs that have only NOAEL or LOAEL information in rodents, the gastruloid assay was in line with the in vivo data. Altogether, these results support the effectiveness of the gastruloid assay, which may be exploited as a non-animal alternative method for DART assessment.


Assuntos
Reprodução , Testes de Toxicidade , Camundongos , Animais , Testes de Toxicidade/métodos , Nível de Efeito Adverso não Observado , Desenvolvimento Embrionário , Gastrulação
4.
Arch Toxicol ; 98(4): 1209-1224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311648

RESUMO

To meet the growing demand for developmental toxicity assessment of chemicals, New Approach Methodologies (NAMs) are needed. Previously, we developed two 3D in vitro assays based on human-induced pluripotent stem cells (hiPSC) and cardiomyocyte differentiation: the PluriBeat assay, based on assessment of beating differentiated embryoid bodies, and the PluriLum assay, a reporter gene assay based on the expression of the early cardiac marker NKX2.5; both promising assays for predicting embryotoxic effects of chemicals and drugs. In this work, we aimed to further describe the predictive power of the PluriLum assay and compare its sensitivity with PluriBeat and similar human stem cell-based assays developed by others. For this purpose, we assessed the toxicity of a panel of ten chemicals from different chemical classes, consisting of the known developmental toxicants 5-fluorouracil, all-trans retinoic acid and valproic acid, as well as the negative control compounds ascorbic acid and folic acid. In addition, the fungicides epoxiconazole and prochloraz, and three perfluoroalkyl substances (PFAS), PFOS, PFOA and GenX were tested. Generally, the PluriLum assay displayed higher sensitivity when compared to the PluriBeat assay. For several compounds the luminescence readout of the PluriLum assay showed effects not detected by the PluriBeat assay, including two PFAS compounds and the two fungicides. Overall, we find that the PluriLum assay has the potential to provide a fast and objective detection of developmental toxicants and has a level of sensitivity that is comparable to or higher than other in vitro assays also based on human stem cells and cardiomyocyte differentiation for assessment of developmental toxicity.


Assuntos
Fluorocarbonos , Fungicidas Industriais , Células-Tronco Pluripotentes Induzidas , Humanos , Testes de Toxicidade/métodos , Corpos Embrioides , Diferenciação Celular , Substâncias Perigosas
5.
Environ Toxicol Chem ; 43(4): 723-735, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411309

RESUMO

Hyalella azteca is an epibenthic crustacean used in ecotoxicology, but there are challenges associated with standard methods using reproduction as an endpoint. A novel, 28-day reproduction toxicity test method for H. azteca was created to address these issues by initiating tests with sexually mature amphipods to eliminate the confounding effects of growth, using a sex ratio of seven females to three males to reduce reproductive variability, and conducting tests in water-only conditions to make recovery of juveniles easier and expand testing capabilities to water-soluble compounds. In the present study, we evaluated the 28-day novel method by comparing it with the 42-day standard test method in duplicate and parallel water-only, static-renewal exposures to sublethal concentrations of imidacloprid (0.5-8 µg/L). Both methods showed similar effects on survival, with survival approaching 50% in the highest test concentration (8 µg/L). However, the 42-day median effect concentrations (EC50s) for growth were more sensitive in the standard method (1.5-3.2 µg/L) compared with the 28-day EC50s generated by the novel method (>8 µg/L). Reproduction endpoints (juveniles/female) produced similar EC50s between methods, but the data were less variable in novel tests (smaller coefficients of variation); therefore, fewer replicates would be required to detect effects on reproduction compared with the standard method. In addition, novel tests generated 28 days of reproduction data compared with 14 days using standard tests and allowed survival and growth of sexes to be assessed independently. Thus, the novel method shows promise to improve the use of reproduction as an endpoint in water-only toxicity tests with H. azteca. Environ Toxicol Chem 2024;43:723-735. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Anfípodes , Formigas , Neonicotinoides , Nitrocompostos , Poluentes Químicos da Água , Animais , Feminino , Poluentes Químicos da Água/análise , Testes de Toxicidade/métodos , Reprodução , Água
6.
Pharmacol Rev ; 76(2): 251-266, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351072

RESUMO

Animals and animal models have been invaluable for our current understanding of human and animal biology, including physiology, pharmacology, biochemistry, and disease pathology. However, there are increasing concerns with continued use of animals in basic biomedical, pharmacological, and regulatory research to provide safety assessments for drugs and chemicals. There are concerns that animals do not provide sufficient information on toxicity and/or efficacy to protect the target population, so scientists are utilizing the principles of replacement, reduction, and refinement (the 3Rs) and increasing the development and application of new approach methods (NAMs). NAMs are any technology, methodology, approach, or assay used to understand the effects and mechanisms of drugs or chemicals, with specific focus on applying the 3Rs. Although progress has been made in several areas with NAMs, complete replacement of animal models with NAMs is not yet attainable. The road to NAMs requires additional development, increased use, and, for regulatory decision making, usually formal validation. Moreover, it is likely that replacement of animal models with NAMs will require multiple assays to ensure sufficient biologic coverage. The purpose of this manuscript is to provide a balanced view of the current state of the use of animal models and NAMs as approaches to development, safety, efficacy, and toxicity testing of drugs and chemicals. Animals do not provide all needed information nor do NAMs, but each can elucidate key pieces of the puzzle of human and animal biology and contribute to the goal of protecting human and animal health. SIGNIFICANCE STATEMENT: Data from traditional animal studies have predominantly been used to inform human health safety and efficacy. Although it is unlikely that all animal studies will be able to be replaced, with the continued advancement in new approach methods (NAMs), it is possible that sometime in the future, NAMs will likely be an important component by which the discovery, efficacy, and toxicity testing of drugs and chemicals is conducted and regulatory decisions are made.


Assuntos
Testes de Toxicidade , Animais , Humanos , Testes de Toxicidade/métodos , Modelos Animais
7.
Sci China Life Sci ; 67(2): 301-319, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864082

RESUMO

Mitochondrial toxicity induced by therapeutic drugs is a major contributor for cardiotoxicity, posing a serious threat to pharmaceutical industries and patients' lives. However, mitochondrial toxicity testing is not incorporated into routine cardiac safety screening procedures. To accurately model native human cardiomyocytes, we comprehensively evaluated mitochondrial responses of adult human primary cardiomyocytes (hPCMs) to a nucleoside analog, remdesivir (RDV). Comparison of their response to human pluripotent stem cell-derived cardiomyocytes revealed that the latter utilized a mitophagy-based mitochondrial recovery response that was absent in hPCMs. Accordingly, action potential duration was elongated in hPCMs, reflecting clinical incidences of RDV-induced QT prolongation. In a screen for mitochondrial protectants, we identified mitochondrial ROS as a primary mediator of RDV-induced cardiotoxicity. Our study demonstrates the utility of hPCMs in the detection of clinically relevant cardiac toxicities, and offers a framework for hPCM-based high-throughput screening of cardioprotective agents.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Cardiotoxicidade/etiologia , Células Cultivadas , Testes de Toxicidade/métodos
8.
Environ Sci Technol ; 58(2): 1048-1054, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38157561

RESUMO

Tebuconazole (TEB), a widely used and persistent pesticide, has garnered attention due to its frequent detection in sediments worldwide. This widespread occurrence has raised concerns about potential dietborne toxicity to benthic crustaceans, as they may ingest contaminated particles in their habitat. While bioaccumulation studies indicate the importance of TEB ingestion for benthic crustaceans, limited data exist on direct dietborne toxicity testing. This study investigated the diet-related toxicity of TEB by subjecting a benthic ostracod, Heterocypris incongruens, to a 6 day toxicity test under dietary and combined exposures. Subsequently, the importance of dietary exposure for TEB toxicity was uncovered, followed by quantification of relative dietborne toxicity contributions using a modified concentration-additive model. Results revealed that the dietary route was more toxicologically significant than the aqueous route in equilibrium. The dietborne lethal concentration (LC50) for TEB on H. incongruens was 200 (170-250) mg/kg, with an 80% relative dietborne toxicity contribution. To gain comprehensive insights into dietborne significance, toxicity data were collected from previous studies involving different pollutants to calculate relative contributions. Finally, the correlation between dietborne toxicity and the partitioning coefficient was analyzed to understand the pollutant behavior and its toxic impact when ingested through the diet.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Crustáceos , Testes de Toxicidade/métodos , Triazóis/toxicidade , Poluentes Ambientais/toxicidade , Água , Poluentes Químicos da Água/toxicidade
9.
Lab Chip ; 23(24): 5068-5080, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37938128

RESUMO

Over the past few decades, there have been increasing global efforts to limit or ban the use of animals for testing cosmetic products. This ambition has been at the heart of international endeavours to develop new in vitro and animal-free approaches for assessing the safety of cosmetics. While several of these new approach methodologies (NAMs) have been approved for assessing different toxicological endpoints in the UK and across the EU, there remains an absence of animal-free methods for screening for dermal absorption; a measure that assesses the degree to which chemical substances can become systemically available through contact with human skin. Here, we identify some of the major technical barriers that have impacted regulatory recognition of an in vitro skin model for this purpose and propose how these could be overcome on-chip using artificial cells engineered from the bottom-up. As part of our future perspective, we suggest how this could be realised using a digital biomanufacturing pipeline that connects the design, microfluidic generation and 3D printing of artificial cells into user-crafted synthetic tissues. We highlight milestone achievements towards this goal, identify future challenges, and suggest how the ability to engineer animal-free skin models could have significant long-term consequences for dermal absorption screening, as well as for other applications.


Assuntos
Cosméticos , Testes de Toxicidade , Animais , Humanos , Testes de Toxicidade/métodos , Pele , Dispositivos Lab-On-A-Chip
10.
Neurotoxicology ; 99: 184-194, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866692

RESUMO

There is a need to assess compounds reliably and quickly for neurotoxicity (NT) and developmental neurotoxicity (DNT). Adverse outcome pathways (AOPs) enable the mapping of molecular events to an apical endpoint in a chemical agnostic manner and have begun to be applied in NT and DNT testing frameworks. We assessed the status of NT/DNT AOPs in the AOP-Wiki (ca. 2/1/23; https://aopwiki.org/), to characterize the state of AOP development, identify strengths and knowledge gaps, elucidate areas for improvement, and describe areas for future focus. AOPs in the Wiki database were assessed for inclusion of NT/DNT molecular events and endpoints, AOP development and endorsement, as well as the linkages of key neurodevelopmental processes with in vitro new approach methods (NAMs). This review found that 41 AOPs have been proposed detailing NT/DNT, of which eight were endorsed by working parties in OECD. Further, this review determined that learning and memory is included as an adverse outcome in eight NT/DNT AOPS, often without distinction regarding the varying forms of learning and memory, regional specification, temporal dynamics, or acquisition mechanisms involved. There is also an overlap with key events (KEs) and in vitro NAMs, which synaptogenesis appeared as a common process. Overall, progress on NT/DNT AOPs could be expanded, adding in modes of action that are missing, improvement in defining apical endpoints, as well as utilizing NAMs further to develop AOPs and identify gaps in current knowledge.


Assuntos
Rotas de Resultados Adversos , Síndromes Neurotóxicas , Humanos , Medição de Risco , Testes de Toxicidade/métodos , Síndromes Neurotóxicas/diagnóstico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Aprendizagem
11.
Regul Toxicol Pharmacol ; 144: 105491, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666444

RESUMO

To better understand endocrine disruption, the U.S. Environmental Protection Agency's (USEPA) Endocrine Disruptor Screening Program (EDSP) utilizes a two-tiered approach to investigate the potential of a chemical to interact with the estrogen, androgen, or thyroid systems. As in vivo testing lacks the throughput to address data gaps on endocrine bioactivity for thousands of chemicals, in vitro high-throughput screening (HTS) methods are being developed to screen larger chemical libraries. The primary objective of this work was to investigate for how many of the 52 chemicals with weight-of-evidence (WoE) determinations from EDSP Tier 1 screening there are available in vitro HTS data supporting a thyroid impact. HTS data from the USEPA ToxCast program and the EDSP WoE were collected for this analysis. Considering the complexity of endocrine disruption and interpreting HTS data, concordance between in vitro activity and in vivo effects ranges from 58 to 78%. Based on this evaluation, we conclude that the current suite of HTS assays is beneficial for prioritizing chemicals for further inquiry; however, without a more detailed analysis, one cannot conclude whether HTS results are the primary mode-of-action. Furthermore, development of in vitro assays for additional thyroid-relevant molecular initiating events is required to effectively predict in vivo thyroid impacts.


Assuntos
Disruptores Endócrinos , Glândula Tireoide , Estados Unidos , Testes de Toxicidade/métodos , Sistema Endócrino , Estrogênios , Androgênios , Disruptores Endócrinos/toxicidade , Ensaios de Triagem em Larga Escala/métodos , United States Environmental Protection Agency
12.
Sci Total Environ ; 901: 165946, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37541495

RESUMO

Benthic sediment toxicity is linked to harmful effects in marine organisms and humans, and an understanding of the link would require, in part, a comprehensive and exhaustive analysis of sediment toxicity data already in hand. One tool which could aid in the process is machine learning (ML), a supervised classification modeling technique that has transformed how actionable insight are acquired from large datasets. The current study is a test of concept in which an ML classifier is sought that can accurately extrapolate the characteristics of a 5437 California-wide coastal training dataset (assembled from 1635 samples) to predict sediment toxicity in southern California bight (SCB). Twelve classifiers were trained to recognize sediment toxicity using 70 % of the dataset and among them, a Gradient Boosting Classifier (GBC) model using latitude, longitude, and water depth was found to be the most accurate at predicting toxicity (83 %). Among the variables, latitude was found to be the most significant driver of prediction by GBC in this test ecosystem. The performance of the model was verified with the remaining 30 % of the dataset and found to be 83 % accurate. Presented with 884 unfamiliar data points assembled from 854 measurements at 346 stations across SCB, GBC was 87 % accurate post-training, thus demonstrating a role supervised learning can play in the southern California environmental analytics.


Assuntos
Sedimentos Geológicos , Testes de Toxicidade , Humanos , Testes de Toxicidade/métodos , Sedimentos Geológicos/análise , Ecossistema , California , Aprendizado de Máquina Supervisionado
13.
Reprod Toxicol ; 120: 108454, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543254

RESUMO

Many New Approach Methodologies (NAMs) have been developed for the safety assessment of new ingredients. Research into reproductive toxicity and teratogenicity is a particularly high priority, especially given their mechanistic complexity. Forty-six non-teratogenic and 39 teratogenic chemicals were screened for teratogenic potential using the in silico DART model from the OECD QSAR Toolbox; the devTox quickPredict™ (devTox assay) test and the Zebrafish Embryotoxicity Test (ZET). The sensitivity and specificity were 94.7% and 84.1%, respectively, for the DART tree (83 chemicals), 86.1% and 35.6% for the devTox (81 chemicals) and 77.8% and 76.7% for the ZET (57 chemicals). Fifty-three chemicals were tested in all three assays and when results were combined and based on a "2 out of 3 rule", the sensitivity and specificity were 96.0% and 71.4%, respectively. The specificity of the devTox assay for a sub-set of 43 chemicals was increased from 26.1% to 82.6% by incorporating human plasma concentrations into the assay interpretation. When all 85 chemicals were assessed in a decision tree approach, there was an excellent predictivity and assay robustness of 90%. In conclusion, all three models exhibited a good sensitivity and specificity, especially when outcomes from all three were combined or used in "2 out of 3" or a tiered decision tree approach. The latter is an interesting predictive approach for evaluating the teratogenic potential of new chemicals. Future investigations will extend the number of chemicals tested, as well as explore ways to refine the results and obtain a robust Integrated Testing Strategy to evaluate teratogenic potential.


Assuntos
Testes de Toxicidade , Peixe-Zebra , Animais , Humanos , Testes de Toxicidade/métodos , Teratógenos/toxicidade , Reprodução , Bioensaio
14.
Crit Rev Toxicol ; 53(6): 372-384, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37540214

RESUMO

To justify investigations on learning and memory (L&M) function in extended one-generation reproductive toxicity studies (EOGRTS; Organization for Economic Co-operation and Development (OECD) test guideline (TG) 443) for registration under Registration, Evaluation, Authorization, and Restriction of Chemical (REACH), the European Chemicals Agency has referred to three publications based on which the Agency concluded that "perturbation of thyroid hormone signaling in offspring affects spatial cognitive abilities (learning and memory)" and "Therefore, it is necessary to conduct spatial learning and memory tests for F1 animals". In this paper, the inclusion of the requested L&M tests in an EOGRTS is challenged. In addition, next to the question on the validity of rodent models in general for testing thyroid hormone-dependent perturbations in brain development, the reliability of the publications specifically relied upon by the agency is questioned as these contain numerous fundamental errors in study methodology, design, and data reporting, provide contradicting results, lack crucial information to validate the results and exclude confounding factors, and finally show no causal relationship. Therefore, in our opinion, these publications cannot be used to substantiate, support, or conclude that decreases in blood thyroid (T4) hormone level on their own would result in impaired L&M in rats and are thus not adequate to use as fundament to ask for L&M testing as part of an EOGRTS.


Assuntos
Reprodução , Testes de Toxicidade , Ratos , Animais , Testes de Toxicidade/métodos , Reprodutibilidade dos Testes , Cognição
15.
ALTEX ; 40(4): 619-634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37422925

RESUMO

In chemical safety assessment, benchmark concentrations (BMC) and their associated uncertainty are needed for the toxicological evaluation of in vitro data sets. A BMC estimation is derived from concentration-response modelling and results from various statistical decisions, which depend on factors such as experimental design and assay endpoint features. In current data practice, the experimenter is often responsible for the data analysis and therefore relies on statistical software, often without being aware of the software default settings and how they can impact the outputs of data analysis. To provide more insight into how statistical decision-making can influence the outcomes of data analysis and interpretation, we have developed an automated platform that includes statistical methods for BMC estimation, a novel endpoint-specific hazard classification system, and routines that flag data sets that are outside the applicability domain for an automatic data evaluation. We used case studies on a large dataset produced by a developmental neurotoxicity (DNT) in vitro battery (DNT IVB). Here we focused on the BMC and its confidence interval (CI) estimation as well as on final hazard classification. We identified five crucial statistical decisions the experimenter must make during data analysis: choice of replicate averaging, response data normalization, regression modelling, BMC and CI estimation, and choice of benchmark response levels. The insights gained are intended to raise more awareness among experimenters on the importance of statistical decisions and methods but also to demonstrate how important fit-for-purpose, internationally harmonized and accepted data evaluation and analysis procedures are for objective hazard classification.


Assuntos
Síndromes Neurotóxicas , Projetos de Pesquisa , Humanos , Bioestatística , Testes de Toxicidade/métodos , Benchmarking
16.
Environ Int ; 178: 108082, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422975

RESUMO

The predominantly animal-centric approach of chemical safety assessment has increasingly come under pressure. Society is questioning overall performance, sustainability, continued relevance for human health risk assessment and ethics of this system, demanding a change of paradigm. At the same time, the scientific toolbox used for risk assessment is continuously enriched by the development of "New Approach Methodologies" (NAMs). While this term does not define the age or the state of readiness of the innovation, it covers a wide range of methods, including quantitative structure-activity relationship (QSAR) predictions, high-throughput screening (HTS) bioassays, omics applications, cell cultures, organoids, microphysiological systems (MPS), machine learning models and artificial intelligence (AI). In addition to promising faster and more efficient toxicity testing, NAMs have the potential to fundamentally transform today's regulatory work by allowing more human-relevant decision-making in terms of both hazard and exposure assessment. Yet, several obstacles hamper a broader application of NAMs in current regulatory risk assessment. Constraints in addressing repeated-dose toxicity, with particular reference to the chronic toxicity, and hesitance from relevant stakeholders, are major challenges for the implementation of NAMs in a broader context. Moreover, issues regarding predictivity, reproducibility and quantification need to be addressed and regulatory and legislative frameworks need to be adapted to NAMs. The conceptual perspective presented here has its focus on hazard assessment and is grounded on the main findings and conclusions from a symposium and workshop held in Berlin in November 2021. It intends to provide further insights into how NAMs can be gradually integrated into chemical risk assessment aimed at protection of human health, until eventually the current paradigm is replaced by an animal-free "Next Generation Risk Assessment" (NGRA).


Assuntos
Inteligência Artificial , Testes de Toxicidade , Humanos , Reprodutibilidade dos Testes , Testes de Toxicidade/métodos , Medição de Risco/métodos
17.
Regul Toxicol Pharmacol ; 143: 105444, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442267

RESUMO

For decades, there has been increasing concern about the potential developmental neurotoxicity (DNT) associated with chemicals. Regulatory agencies have historically utilized standardized in vivo testing to evaluate DNT. Owing to considerations including higher-throughput screening for DNT, reduction in animal use, and potential cost efficiencies, the development of alternative new approach methods (NAMs) occurred; specifically, the advent of the DNT in vitro test battery (DNT IVB). SciPinion convened an expert panel to address specific questions related to the interpretation of in vitro DNT test data. The consensus of the expert panel was that the DNT IVB might be used during initial screening, but it is not presently a complete or surrogate approach to determine whether a chemical is a DNT in humans. By itself, the DNT IVB does not have the ability to capture nuances and complexity of the developing nervous system and associated outcomes including behavioral ontogeny, motor activity, sensory function, and learning/memory. Presently, such developmental landmarks cannot be adequately assessed in the DNT IVB or by other NAMs. The expert panel (all who serve as co-authors of this review) recommended that additional data generation and validation is required before the DNT IVB can be considered for application within global regulatory frameworks for decision-making.


Assuntos
Síndromes Neurotóxicas , Testes de Toxicidade , Animais , Humanos , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais , Síndromes Neurotóxicas/diagnóstico , Síndromes Neurotóxicas/etiologia , Projetos de Pesquisa
18.
ALTEX ; 40(3): 367-388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37470349

RESUMO

The EU's REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) Regulation requires animal testing only as a last resort. However, our study (Knight et al., 2023) in this issue reveals that approximately 2.9 million animals have been used for REACH testing for reproductive toxicity, developmental toxicity, and repeated-dose toxicity alone as of December 2022. Currently, additional tests requiring about 1.3 million more animals are in the works. As compliance checks continue, more animal tests are anticipated. According to the European Chemicals Agency (ECHA), 75% of read-across methods have been rejected during compliance checks. Here, we estimate that 0.6 to 3.2 million animals have been used for other endpoints, likely at the lower end of this range. The ongoing discussion about the grouping of 4,500 regis-tered petrochemicals can still have a major impact on these numbers. The 2022 amendment of REACH is estimated to add 3.6 to 7.0 million animals. This information comes as the European Parliament is set to consider changes to REACH that could further increase animal testing. Two proposals currently under discussion would likely necessitate new animal testing: extending the requirement for a chemical safety assessment (CSA) to Annex VII substances could add 1.6 to 2.6 million animals, and the registration of polymers adds a challenge comparable to the petrochemical discussion. These findings high-light the importance of understanding the current state of REACH animal testing for the upcoming debate on REACH revisions as an opportunity to focus on reducing animal use.


Assuntos
Alternativas aos Testes com Animais , Testes de Toxicidade , Animais , Alternativas aos Testes com Animais/métodos , Testes de Toxicidade/métodos , Medição de Risco/métodos
19.
Food Chem Toxicol ; 179: 113944, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37453475

RESUMO

The development of alternative methods to animal testing has gained great momentum since Russel and Burch introduced the "3Rs" concept of Reduction, Refinement, and Replacement of animals in safety testing in 1959. Several alternatives to animal testing have since been introduced, including but not limited to in vitro and in chemico test systems, in silico models, and computational models (e.g., [quantitative] structural activity relationship models, high-throughput screens, organ-on-chip models, and genomics or bioinformatics) to predict chemical toxicity. Furthermore, several agencies have developed robust integrated testing strategies to determine chemical toxicity. The cosmetics sector is pioneering the adoption of alternative methodologies for safety evaluations, and other sectors are aiming to completely abandon animal testing by 2035. However, beyond the use of in vitro genetic testing, agencies regulating the food industry have been slow to implement alternative methodologies into safety evaluations compared with other sectors; setting health-based guidance values for food ingredients requires data from systemic toxicity, and to date, no standalone validated alternative models to assess systemic toxicity exist. The abovementioned models show promise for assessing systemic toxicity with further research. In this paper, we review the current alternatives and their applicability and limitations in food safety evaluations.


Assuntos
Alternativas aos Testes com Animais , Cosméticos , Animais , Alternativas aos Testes com Animais/métodos , Testes de Toxicidade/métodos , Simulação por Computador , Inocuidade dos Alimentos
20.
Aquat Toxicol ; 261: 106582, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37369158

RESUMO

During toxicity testing, chemical analyses of oil and exposure media samples are needed to allow comparison of results between different tests as well as to assist with identification of the drivers and mechanisms for the toxic effects observed. However, to maximize the ability to compare results between different laboratories and biota, it has long been recognized that guidelines for standard protocols were needed. In 2005, the Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF) protocol was developed with existing common analytical methods that described a standard method for reproducible preparation of exposure media as well as recommended specific analytical methods and analyte lists for comparative toxicity testing. At the time, the primary purpose for the data collected was to inform oil spill response and contingency planning. Since then, with improvements in both analytical equipment and methods, the use of toxicity data has expanded to include their integration into fate and effect models that aim to extend the applicability of lab-based study results to make predictions for field system-level impacts. This paper focuses on providing a summary of current chemical analyses for characterization of oil and exposure media used during aquatic toxicity testing and makes recommendations for the minimum analyses needed to allow for interpretation and modeling purposes.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Testes de Toxicidade/métodos , Poluição por Petróleo/análise , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...